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Abstract—The radar information channel is developed as a 
theoretical model for the study of uncertainty within the design, 
development, and research of radar signature exploitation 
systems.   Information measures are developed which 
characterize sources of uncertainty and propagate the associated 
impacts to system performance. Sources of uncertainty are 
studied to form an information loss budget for trading 
component design options against overall system performance. 

I. INTRODUCTION 
The ability to perform radar system component trade 

studies in an efficient and meaningful way requires that we 
study the function of any one component in the context of the 
system as a whole.  The integration science that works at the 
seams between components is critical to the research of 
emerging signature exploitation technology.  System 
components include hardware designs within the antenna, 
receiver, analog-to-digital converter, and signal processor 
areas as well as software designs to measurement functions, 
transmit waveforms, digital sampling approaches, and signal 
processing techniques.  These radar systems also include a 
new list of significant design components that are related to 
the task of target signature measurement, feature processing, 
and decision algorithm performance.  The use of existing 
systems theory prototypes such as the radar range equation are 
useful in studying target visibility, yet fall short in their ability 
to fully characterize the flow of information through the radar 
system as it relates to a desired specific exploitation 
capability.   The resulting expanded trade space requires new 
systems theory models that inherently manage robustness in 
the face of the complexities involved in achieving optimal 
component design.  The relative success of these efforts will 
largely depend on our ability to study the performance of 
modular systems under the effects of various sources of 
uncertainty.   Thus theory models should propagate the effects 
of these uncertainly sources acting on individual components 
within the system to the predicted system performance 
measures. Information theory prototypes enable the study of 
individual components as they relate to system performance 
within the decision rule subspace.  It is this inherent benefit 

that distinguishes an information theoretic approach over 
traditional statistical pattern recognition methods.  

 
Woodward and Davies [1] and Woodward [2] were the first 

to apply the information theoretic approach to the analysis of 
radar, soon after the appearance of Shannon’s original work 
[3] on information theory.  More recently Bell [4] has 
suggested the use of an information theoretic approach to the 
design of radar waveforms.  Dr. Bell formulated and obtained 
a solution to the problem of designing a waveform that 
maximized the mutual information (MI) between the target 
impulse response (viewed as a random process) and the 
received signal.  Recently, Leshem et al. [5] extended Bell’s 
work to the case of multiple extended targets.  Sowelam and 
Tewfik [6] also used waveform design in conjunction with the 
Kullback-Liebler [7] criterion to distinguish between different 
target classes.  Briles [8] applied rate distortion theory to 
analyze the impulse radar for use in target identification 
design and performance prediction.    Home and Malvern [9] 
introduce a high level theoretical framework to calculate the 
information conveyed by the image of a target based on pixel 
values relative to the modeled fluctuations of these values.  
Principe, Xu, Zhao, and Fisher [10] present a framework for 
learning based on information theoretic criteria.  Methods 
such as the maximum likelihood test have been used to 
evaluate radar signature processes for target classification 
performance as in the work by O’Sullivan et al [11].  This 
framework proposes several approximations to the Kulback-
Leibler divergence that can be used to estimate statistical 
distances compatible with pattern matching algorithms.  Malas 
and Pasala [12] introduce the use of MI as a similarity 
measure for use in radar signature database validation.  
Recently, there has been interest in radars with an architecture 
referred to as the MIMO (Multiple Input Multiple Output) 
radar [13] – [16].  It is the information theoretic approach that 
unifies the analysis of these radar systems.   

In varying degrees the body of existing referenced work 
has (in one form or another) presented the radar system in 
terms of a Markov Chain within a channel configuration and 
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characterized the information flow within from source and 
sink. Tishby [17] has developed the information bottleneck 
approach, wherein rate-distortion theory, the Data Processing 
Theorem, and compression play major roles.  The max-flow 
min-cut application to the channel problem has been studied 
to understand the relationship of capacity to information 
flow.  A significant contribution of the work provided herein 
is the development and demonstration of a systems theory 
model for the study of the effects of uncertainty on the 
information flow within the various components of the sensor 
system.  The propagation of component level uncertainty to 
the system performance measure is achieved. 

 
Modern sensing systems produce signature measurements 

of exploitable physical processes (signal) that when combined 
with the effects of system uncertainties (Table I) result in an 
altered signature subspace or distorted decision rule.  These 
effects limit the exploitation of physics-based features and 
result in a loss in information that can be extracted from 
signature measurements.  Knowledge of the composition and 
relative weighting of the uncertainty sources within the system 
may allow one to efficiently minimize the overall loss in the 
information flow while trading costs associated with 
component design.   

TABLE I.   RADAR SYSTEM UNCERTAINTY SOURCES 

Uncertainty Core 
Area Uncertainty Subcategory 

1. Signature 
Measurementa Phase Amplitude Thermal 

Noise 

2. Object 
Tracking & 
Motion 

Object Range, 
Velocity, & 

Aspect 
Estimates 

Object 
Articulation  

Intra-
measurement 

Motion 

3. Interference  Clutter RF Interference Jamming 
4. Decision Rule 

Training 
Limitations 

Data 
Sparseness 

Parameter 
Variation Obscuration 

a. Traditional Measurement Uncertainty  

 
It is important to contrast the proposed concept of 

uncertainty with several terms generally used by the 
measurement community [18].  Accuracy refers to the 
agreement between a measurement and the true or correct 
value.  Precision refers to the repeatability of a measurement.  
Error refers to the disagreement between a measurement and 
the true or accepted value.  The uncertainty in a stated 
measurement is the interval of confidence around the 
measured value such that the measured value is expected not 
to lie outside this stated interval.  The use of the term 
“uncertainty” usually implies that the true value may not be 
known and can be stated along with a probability.  Given the 
nature of the sources of uncertainty identified within this 
body of work, the condition of “no known truth” is highly 
relevant.  However, uncertainty as defined by the sensor 
measurement community may not be sufficient to address the 
full range of issues under study within a radar exploitation 
system.    

II. APPROACH 
 

An information theoretic model is presented to quantify 
and study the flow of information through the radar system.  
Analysis of key component design choices including sensor 
(bandwidth, dynamic range, and signal-to-noise ratio), 
classifier algorithm training, and algorithm feature design are 
performed to study sensitivities to information loss due to 
various uncertainty sources.  Insight into the relative effects 
of component information loss within the system will provide 
insight as to how to proceed with future studies of 
uncertainty sources listed in Table I.   

A. Radar Information Channel Model  
 
The radar system can be viewed within a systems model 

depicting the information flow through the signature sensing 
and processing components of a radar system as shown in 
Fig. 1 [19].     

 

 
 
 
 
 
 
 
 

 

Figure 1.  Information Theoretic Radar Channel Model. 

The relationship between the true state (H) of a target under 
measurement and the decision state (Q) of a classifier 
algorithm is the basis chosen for performance 
characterization.  Successful flow of information results in 
agreement between H and Q.  This channel model differs 
from the communications channel model in several important 
respects.  In the communications channel the transmission 
signal is designed to maximize information flow through a 
fixed channel.  In the case of the radar information channel, 
the problem involves the design of the channel for maximum 
information flow given a fixed input (the scattered field of the 
targets).    

B. Radar Sensor Model 
 

The use of high range resolution (HRR) radar 
measurements has been useful in the support of research of 
signature exploitation capability within airborne platforms.  
In view of the uncertainties such as those listed in Table I, the 
HRR signature may be considered to be a random vector.  
Given the dynamic nature of the phenomenon underlying 
these uncertainties the statistics associated with the HRR 
random vector are often time varying.  Therefore, the 
measured HRR signature of the target at a given time is a 
realization of a multidimensional random process (time 
varying random vector).   If the target statistics are assumed 
to be stationary (constant with time), the sample signatures 
associated with this random vector correspond to a stationary 
random process that can be modeled and studied.  For the 
purposes of this study, uncertainty due to thermal noise, 
target aspect, and training limitations will be studied. 
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C. Target Scattering Model 
 

In the high frequency regime used to obtain HRR 
signatures, the target may be approximated1 as a collection of 
scattering centers valid over a limited aspect window and 
frequency band.  These scattering centers may be considered 
to be localized to a point and represent a variety of scattering 
phenomena ranging from specular reflection to diffraction 
phenomena such as edge and tip diffraction.  The 
mathematical definition of the HRR signature is developed 
from the normalized scattered field in (1) for a single 
frequency.  In equation (1) σ is the radar cross section and R 
is the range to the scattering center.  sE and iE are the 
scattered field and the incident field respectively.    

2

2

24lim
i

s

R E

E
Rπσ

∞→
=                           (1) 

Using scattering center modeling and the far field 
approximation, equation (1) can be written in terms of the 
target aspect angle and the transmitted wavelength as shown 
in equation (2) [20].   

∑
=

=
M

m

Rj
m

m
eS

1

4

),,( λ
π

σλφθ                           (2) 

In equation (2) S is the band-limited frequency response of 
the target.  Applying matched filter processing and the 
discrete Fourier transform, the measured HRR signature can 
be modeled for a given aspect angle and range of frequencies 
present in the transmitted waveform.  The variation in 
signature phenomenology due to the uncertainties in the 
aspect angle are captured in the signal model illustrating that 
the HRR signature must be viewed as a random process 
represented here as X .  A small window of aspect angles, 
typically less than 5x5  in azimuth and elevation around a 
specified aspect, is chosen for targets of interest at X-band 
frequencies (8-12 GHz) in the following development.  The 
targets are electrically large with dimensions in range and 
cross-range of many wavelengths.  In all cases the thermal 
noise is assumed to be additive. 

D. Decision Algorithm 
The algorithm used to perform the feature extraction 

function f in Fig. 1 is based on the principle components [21] 
(or modes) of the complex HRR signature process X .  The 
discriminant D in Fig. 1 then becomes the power associated 
with the projection of the sampled test signature vector from 
X  with the principle eigenvector (or eigenvectors) associated 
with our best characterization of X .  The eigenvectors of 
X are estimated from the training process 'X  as shown in 
Fig. 1.   

                                                           
1 Note that as an approximation, scattering centers may not be 
sufficient to adequately represent complex electromagnetic 
phenomenology: e.g., creeping waves, edge waves, and 
cavity scattering.  

E. Decision Rule Training  

The training process component 'X  in Fig. 1 represents 
the best possible statistical characterization of the observed 
signature process X .  Signature training processes must 
represent the radar measured signature process across a wide 
range of target articulations and configurations as well as 
under many operating conditions including clutter, 
obscuration, and other sources of RF interference.  
Construction of a signature training database derived entirely 
from measurements is expensive and can be an impractical 
proposition.  It is possible to construct a signature database 
using electromagnetic scattering codes.  However, given the 
complexity of typical targets and the challenge of modeling a 
variety of electromagnetic scattering phenomena ranging 
from specular reflection to edge diffraction, smooth surface 
diffraction etc., computation of signatures with sufficient 
accuracy is a challenging task [12].  Within this analysis the 
dissimilarity of X  with 'X  will be generated using scattering 
center decimation.  The number of scattering centers 
associated with peak features in X  is reduced incrementally.  

≡'X X  only when X is used for the training of the decision 
rule d in Fig. 1.    

 

F. Numerical Experiments 
The information flow between components within the 

radar system is studied through several numerical 
experiments.   The design of the sensor, decision rule training 
approach, and algorithm feature are varied under specified 
uncertainty conditions.  The information loss at each 
component is computed for each design/uncertainty 
configuration.  The various experimental configurations are 
outlined in Table II.   The baseline configuration is as defined 
in Case 1 with the signal-to-noise ratio (SNR) set to 20 dB 
and the target aspect uncertainty (θ ) set to )3(2/ σ−+   2 in 
both azimuth and elevation.   Cases 1-4 are designed to study 
the sensitivity of information loss within various components 
of the system to changes in key design parameters and 
uncertainty conditions.  In Case 1 the sensitivity to additive 
thermal noise is studied at baseline conditions.  In Case 2 the 
sensitivity of baseline component information loss is studied 
as a function of increasing bandwidth.  In Case 3 the number 
of modes used to construct the signature feature (number of 
eigenvectors) is varied to study the effect of information loss 
within components.  In Case 4 baseline conditions are used to 
study the information loss associated with the degree of 
similarity between the training process 'X  and the measured 
process X .    

TABLE II 
EXPERIMENTS 

Case System Component Design 

                                                           
2  The target aspect angle is modeled as Gaussian in Azimuth 
& Elevation falling within )3(2/ σ−+ of the mean. 
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Sensor, X  Feature, f Training 
Process, 'X  

1 
 

Bandwidth: 500 MHz 
Dynamic Range: 10 Bit 

SNR: 0-20 dB, θ = σ34  

Mode: 1 ≡'X X  

2 
 

Bandwidth: 100-1000 MHz 
Dynamic Range: 10 Bit 

SNR: 20 dB, θ = σ34  

Mode: 1 ≡'X X  

3 
 

Bandwidth: 500 MHz 
Dynamic Range: 10 Bit 

SNR: 20 dB, θ = σ34  

Modes: 1-
15 ≡'X X  

4 
 

Bandwidth: 500 MHz 
Dynamic Range: 10 Bit 

SNR: 0-20 dB, θ = σ34  

Mode: 1 ≠'X X  

*Note: Equiprobable Binary Hypothesis Conditions 
III. THEORY 

It is desired to quantify the impact of uncertainty on the 
information loss associated with selected components.  Two 
theorems from information theory play key roles in our 
development of this relationship. The first theorem is Fano’s 
Inequality which relates information theoretic quantities to 
the Probability of Error (Pe) criterion for a target 
classification system [22]. The second theorem is the Data 
Processing Inequality [22].  
 
A. Fano’s Inequality and The Data Processing Inequality 

The Data Processing Inequality allows the analysis of the 
flow of information from the measured target returns through 
the signal processing architecture and into the decision rule 
algorithm, detailing where information is lost.  In this 
manner, stages in the information processing pipeline where 
information is lost can be identified, analyzed and optimized, 
leading to improvement in overall system performance. 
 

The discrete random variable H represents which of N 
possible hypotheses has occurred. For example, when N=2 
we can have outcomes A or B.   Conditioned on the 
generating hypothesis H, there is typically a 
multidimensional encoded source3

EX which when subjected 
to the uncertainties associated with measurement are realized 
as the random radar returns from the scattering of the object 
under measurement. After mixing, filtering, and signal 
processing, these returns become the measured random 
signature vector X .   Typically the multidimensional random 
feature Y  is extracted from X  in order to support the desired 
function of the exploitation system.  The decision rule 
training process 'X  is used to develop a full characterization 
of Y . This characterization is applied to sample measured 

                                                           
3 EX in this context is deterministic.  Given the 
“unknowable” nature of this code through measurement or 
modeling, the code itself is actually stochastic in nature and 
will be treated as such in future work. 

signatures of X  to generate the random discriminant D.   'X  
is also used in conjunction with sparse samples from X  to 
determine the optimal algorithm decision rule d.  The 
exploitation algorithm applies the decision rule d to D.  The 
discrete random variable Q denotes the classifier algorithm 
decision of which hypothesis occurred based on the signal 
processed feature Y and resulting discriminant D.  
 

Fano’s equality for the model in Fig. 1 is given in (3). 
 

S(Pe)  = δ -  Pe ⋅ log2(N-1)  +  S(H/Q)                   (3) 
 

In (3) Pe is the probability of error of the decision rule 
algorithm, S(H) is the Shannon entropy of the discrete 
random variable H.  S(H/ Q) is the conditional entropy of H 
given Q.  δ is a bias offset derived from symmetries in the 
data and decision algorithm [19], as well as the signal 
processing algorithm. Typically δ is small and to a first 
approximation may be neglected.  This approximation will be 
made in the following analysis.  I(H;Q) is the mutual 
information between H and Q [23]. Using I(H;Q)=S(H) – 
S(H/ Q) and (3) we get (4) below. 

 

S(Pe) ≈  - Pe ⋅ log2 (N-1) + S(H)  -  I(H;Q)                  (4) 
 

Equation (4) can then be written more completely for N=2 as 
in (5) below. 

 

S(Pe) ≈  S(H) -  I(H;Q)                      (5) 
 

Equation (5) can be written in terms of the inverse function F 
as shown in (6). 

Pe ≈  F(S(H)  –  I(H;Q))                    (6) 
 

Assuming that the Pe lies between [0,1/2], F is a deterministic 
strictly monotonically increasing function that maps 
information theoretic quantities into a Pe.  The quantity in (7) 
is the end to end information loss (IL) for the system. 

 IL ≈  S(H) – I(H;Q)                       (7)  
 

Minimizing the information loss minimizes the system Pe.  
 

The entropic quantity S(H) is determined by the a priori 
probabilities of the outcomes of the random variable H, 
which correspond to the different target classes.  Since F is a 
known function, the relation Pe ≈ F( S(H) – I(H;Q) ), for 
fixed S(H), determines the mutual information I(H;Q) needed 
to achieve a specified Pe. For example, for an equiprobable 
binary hypothesis scenario4, S(H) = 1 Bit, Pe ≈ F( 1 – I(H;Q) 
).  Specifying a desired Pe determines the amount of allowed 
IL. How the IL budget is spent as information cascades from 
the input collected signature space to the classifier output can 
be traded off.  Fig. 2 is an abstract diagram indicating 
possible tradeoffs.  

 

Information losses within the channel may be studied with 
respect to various uncertainties such as those in Table I.  The 
Data Processing Inequality states that information can only be 
lost in the information channel as shown in (8).  

                                                           
4  The selection of the uniform prior on H is for illustration 
purposes. 
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Figure 2.   An abstract sketch of information flow tradeoffs [19]. 

 

I(H;X)≥ I(H;D)≥ I(H;Q)                          (8) 
 

Using the relationships in (4) and (8) the loss associated with 
each source within the channel can be characterized at certain 
points in the channel as shown in (9).   
 

S(H) – I(H;X)  ≤ S(H) – I(H;D)  ≤  S(H) – I(H;Q)        (9) 
 

Through the use of information theory based principles, a 
formal mathematical definition of sensor system uncertainty 
is possible.  The fundamental relationship between the 
entropy associated with the probability of error and the MI 
between the random variables H and Q becomes the basis for 
our study of system uncertainty.  From (4) we can see that all 
sources of uncertainty introduced in the channel will result in 
an increase in Pe.   An increase in S(Pe) will result in a 
reduction in I(H;Q) and induce a loss in information flow and 
a degradation to the Pe . 

 
Information is defined in terms of the mutual information 

between the “typical subspaces” [22] associated with the true 
object state H and the decision state Q.   Systems (and 
associated sub-component) designs that increase the MI 
between these “typical signature subspaces” increase the flow 
of information.   “Uncertainty” is defined as an alteration to 
the typical signature subspaces (growth or movement) that 
results in a potential loss in the flow of information and an 
ultimate decrease in confidence in decision. 
 

IV. RESULTS 
 

The results of the experiments outined in Table II are 
presented below.  

 

In Fig. 3 the loss in information going from the hypothesis 
H to the discriminant D is captured by I(H;D).  The 
information loss ranges from 1-0.12 Bits at 0 dB SNR to 
about 1-0.45 Bits at 20 dB SNR.  Most of the information 
gain appears to be prior to 10 to 12 db SNR.   Using equation 
(5) the Fano estimate of the system performance measure of 
Pe is observed to be equal to the actual Pe .  Consistent with 
the trends in information loss, most of the reduction in Pe 
occurs prior to 10 to 12 dB SNR.  In Fig. 4 the difference 
between measures I(H;D)  and I(H;Q) show a loss of about 
0.05 to 0.1 Bits of information in applying the discriminant to 
the algorithm decision rule.   

 
In Fig. 4 the effects of bandwidth on the loss of 

information is illustrated.  The trends are similar to those in 

Case 1 with I(H;D) achieving  most of the loss reduction and 
system performance (Pe) at about 500 MHz (approximately 
0.55 Bits of loss).   
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Fig. 3.  Case 1: Component Information Loss and System Probability of 
Error as a Function of Signal-to-Noise Ratio, BW=500 MHz 

The loss in information at the discriminant point D ranges 
from .87 Bits at 100 MHz of BW and reduces to about 0.5 
Bits at 1 GHz of BW.  A loss of less than 0.1 Bits of 
information is incurred in applying the algorithm decision 
rule to the discriminant (D).  
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Fig. 4.  Case 2: Component Information Loss and System Probability of 

Error as a Function of System Bandwidth, SNR=20 dB 

In Case 3 the effects of increased dimensionality in the 
feature space Y are studied for the baseline conditions.   Fig. 
5 illustrates the reduction in information loss as a function of 
an increase in the number of modes within the feature Y .   By 
the time Y  is constructed using five modes the measure Pe 
reaches near full performance.  In Fig. 6 the case 4 
experiment results illustrate the loss of information due to 
limitations within the training signature process.   Scattering 
centers associated with features are incrementally removed to 
drive the training process 'X  X away from the training 
process.  Within the range of the similarity index, there 
clearly exists a knee in the curve between index 3 and 5.    

  

The results for all four cases are summarized in Table II 
below.   The loss associated with various components is 
tabulated as a function of the four experiments (Cases 1-4).   
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Fig. 5.  Case 3: Component Information Loss and System Probability of 

Error as a Function of Number of Modes in Feature Y, SNR=20 dB, 
BW=500 MHz 
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Fig. 6.  Case 4: Component Information Loss and System Probability of 

Error as a Function of Training Process Similarity to Measured Signature 
Process, SNR=20 dB, BW=500 MHz 

 

TABLE III 
INFORMATION LOSS BUDGET 

System Component Information Loss, Bits 
Case  1 SNR Case 2 

BW 
Case 3 Y Case 4 

( 'X , X ) 
Source-to-
Measurement (X) 
 

TBP 
(TBP)* 

TBP 
(TBP)* 

TBP 
(TBP)* 

TBP 
(TBP)* 

Measurement –to-
Discriminant (D) 

0.55-0.88 
(0.55)* 

0.45-0.95 
(0.55)* 

0.03 -0.1 
(0.5)* 

0.55-0.8 
 

Decision Rule 
Application (Q) 

< 0.05 
(0.1)* 

< 0.1 
(0.1)* 

< 0.05 
(0.1)* 

< 0.1 
(0.1) 

*Baseline conditions, ** TBP: To be provided in final draft 

V. CONCLUSION 
In general it appears that for this binary decision algorithm, 
several observations can be made.  With 1 Bit total 
information in the channel, the component loss due to the 
uncertainty within the application of the algorithm decision 
rule is small compared to the loss incurred by the 
transformation of the encoded signature to the discriminant 
D.  Additional insight will be available when the values of 
I(H; X )are available to provide the loss associated with the 
measurement of the target class hypotheses.   
 

The selection of 500 MHz for transmit BW and five modes 
within Y appear to be good design choices given the 

information loss curves in Figures 3-5.   A SNR of at least 10 
dB is required to realize optimal performance.   It appears 
that the sensitivity to the selection of the number of modes 
within the feature design Y can be high when the number of 
modes is below a minimum cut-off.  Uncertainties due to 
training limitations and that associated with feature design 
appear to be the dominant considerations within the limits of 
this study.   
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